直方图均衡化
直方图均衡化就是通过变换函数将原图的直方图调整为平坦的直方图,然后用此直方图校正图像,通过均衡化是图像灰度间隔拉大,加大了图像反差,改善视觉效果,达到增强目的。从而有利于图像的分析和识别,并且每个灰度级有大致相同的像素点。
图像直方图描述图像中各灰度级出现的相对频率。其横坐标是灰度值、纵坐标是概率密度(连续图像)或概率值(离散图像)。灰度直方图可以得到诸如总体明亮程度、对比度、对象可分性等与图像质量有关的灰度分布概貌。例如,一些图象由于其灰度分布集中在较窄的区间,对比度很弱,图象细节看不清楚。此时,可采用图像灰度直方图均衡化处理。
图像滤波的降噪处理
图像滤波是图像预处理中不可缺少的操作,其处理效果的好坏将直接响到后续图像处理和分析的有效性和可靠性。图像滤波的作用:一是抽出对象的特征作为图像识别的特征模式;二是为适应图像处理的要求,消除图像数字化时混入的噪声。
图像滤波,即在尽量保留图像细节特征的条件下对目标像的噪声进行抑制。通过图像滤波抑制噪声除,可以得到比较清晰干净的图像,但会使得边缘模糊。
图像空间域低通滤波的防抖动作用
图像空间域低通滤波可以消除噪声,减小“抖动”现象,提高信噪比,增加图象的清晰度,并能提取图象的特征作用为识别目标的模式。
它会使图像变的模糊平滑。使不同颜色或灰度间有一定的过度,棱角分明的图像模糊化由于图像噪声空间相关性弱,他们的频谱一般是位于空间频率较高的区域,而图像本身的频率分量则处于较低的空间频率区域内,因此可以用低通滤波的方法来实现图像的平滑,去除噪声干扰。